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ISSCENS
Program Goals

To teach basic
software engineering
concepts to
environmental
science students

To introduce students
to high-performance
computing

To enable students to
work with advanced
models used within
environmental
sciences

To encourage
durable and valuable
connections among
mentors and students

A Program for Computational Education and Internship Training
for Students in Environmental Sciences

Program Structure

WEEK 1: will begin Wednesday and will teach basic programming and
software engineering with an emphasis on the particular interests of
environmental science students.

WEEK 2: will introduce advanced visualization and compiled languages.

WEEK 3: will cover material for high-performance computing, including serial
optimization, high-throughput computing, MPI, and OpenMP.

FOLLOWING 8 WEEKS: Once attendees have completed this Summer
School they should be well prepared for internships with modeling groups at
any NASA laboratory.

Those selected will begin 8-week internships at various NASA research
centers nationwide immediately following the Summer School.

Program Logistics

2.5-Week Summer School:

o Dates of Summer School: May 29-June 14, 2013

e 20 students will be admitted

o Summer School will take place at The University of Virginia

e Housing will be provided

o Breakfast and lunch will be provided on weekdays, and a stipend for
dinners and meals on weekends will be paid

8-Week NASA Internships:

o Dates of Internships: June 17-August 8, 2013

e 10 students will be selected from the Summer School participant pool
e Internships will take place at various NASA centers

» Interns will receive a stipend of $600 per week

Application Process

Submission of online application, unofficial undergraduate transcript, 2 letters
of reference and a letter of intent.

Application Deadline
March 15, 2013

To learn more about the program,
visit: http://www.uvacse.virginia.edu/isscens



TENTATIVE SCHEDULE
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Week 1 begins Wednesday. The first week will  Lecture: Sorting and searching. Plotting  Lecture: Serial optimization
focus on Python. using Matplotlib. More advanced for both Python and Fortran.
visualization using ParaView.
Introduction to Unix.

Lab: Searching data. Line plots, contour .Lib: thlmlzatlon ofz'm
- . intentionally badly-written
plots, and surface plots. Volumetric ooram
rendering examples with ParaView. program.
DAY 2 Lecture: High-throughput
Tuesday

computing
DAY 3 Lecture: Introduction to programming. Lecture: Introduction to Fortran 2003. Lecture: Beginning MPI.
\ihieibye Fundamental data types including integers, Use of a compiler. Differences between  Collective communications.
floating-point numbers, and characters/strings. compiled languages and interpreted
Pitfalls of working with floating-point numbers. languages. Data types and typing. Arrays
Type conversions. Input and output to the console. and array operations. Input and output.
Conditionals and looping. Conditionals and loops.

Lab: Programming simple expressions. Writing Lab: Repeat the Day 1/Week 1 exercises _I@b: Monte S
o . . - . . simulations.
correct conditional expressions. Programming loops  with a compiler and different syntax.

(while, for, and repeat). Reading and writing data as arrays.
DAY4
Thursday

Lecture: Classes and object-oriented
programming. Constructors and methods.
Data hiding. Inheritance. Software design
principles. More advanced Unix.

Lab: Writing a bash script
to submit multiple jobs,
each rendering several
frames of a “movie,” to a
queuing system.

Lab: Writing a class containing
topographic data. Application of the class
to a 2D grid. Interaction of the class with
NumPy arrays and Matplotlib.

Lecture: Functions, variable scope. Modules and Lecture: Functions and subroutines. Lecture: More advance
namespaces. File input and output. Modules. Defined types. Procedure and ~ MPI. Point-to-point
operator overloading. Make and make communications.
files. Simple bash scripting.

Lab: Reading data into a program. Writing Lab: Writing simple functions and Lab: Solving Laplace’s
functions. Grouping functions into a module. subroutines. Designing a programmer equation

defined type within a module and

developing related procedures. Writing a

simple bash script to compile and run a

program.
Lecture: Lists and list operators. Tuples and Lecture: Inheritance and polymorphism. Lecture: OpenMP.
dictionaries. Introduction to NumPy. Arrays and Introduction to Co-Array Fortran.

array operators. Differences between arrays and Introduction to using a queuing system.

lists.

Lab: Working with NumPy arrays. Array operations Lab: Conversion of the defined type from Lab: Another way to solve
on data. Mathematical operations. Development of a the previous day into a class. Submitting  Laplace’s equation.
short module to analyze climate data. jobs to a queue.

To learn more about the program, visit:




