Sponsored by
The University of Virginia
Alliance for Computational
Science and Engineering
(UVACSE)

and
The National Aeronautics
and Space Administration
(NASA)

ISSCENS
Program Goals

To teach basic
software engineering
concepts to
environmental
science students

To introduce students
to high-performance
computing

To enable students to
work with advanced
models used within
environmental
sciences

To encourage
durable and valuable
connections among
mentors and students

A Program for Computational Education and Internship Training
for Students in Environmental Sciences

Program Structure

WEEK 1: will begin Wednesday and will teach basic programming and
software engineering with an emphasis on the particular interests of
environmental science students.

WEEK 2: will introduce advanced visualization and compiled languages.

WEEK 3: will cover material for high-performance computing, including serial
optimization, high-throughput computing, MPI, and OpenMP.

FOLLOWING 8 WEEKS: Once attendees have completed this Summer
School they should be well prepared for internships with modeling groups at
any NASA laboratory.

Those selected will begin 8-week internships at various NASA research
centers nationwide immediately following the Summer School.

Program Logistics

2.5-Week Summer School:

o Dates of Summer School: May 29-June 14, 2013

e 20 students will be admitted

o Summer School will take place at The University of Virginia

e Housing will be provided

o Breakfast and lunch will be provided on weekdays, and a stipend for
dinners and meals on weekends will be paid

8-Week NASA Internships:

o Dates of Internships: June 17-August 8, 2013

e 10 students will be selected from the Summer School participant pool
e Internships will take place at various NASA centers

» Interns will receive a stipend of $600 per week

Application Process

Submission of online application, unofficial undergraduate transcript, 2 letters
of reference and a letter of intent.

Application Deadline
March 15, 2013

To learn more about the program,
visit: http://www.uvacse.virginia.edu/isscens

TENTATIVE SCHEDULE
T wewow [wemowo | wescome

Week 1 begins Wednesday. The first week will Lecture: Sorting and searching. Plotting Lecture: Serial optimization
focus on Python. using Matplotlib. More advanced for both Python and Fortran.
visualization using ParaView.
Introduction to Unix.

Lab: Searching data. Line plots, contour .Lib: thlmlzatlon ofz'm
- . intentionally badly-written
plots, and surface plots. Volumetric ooram
rendering examples with ParaView. program.
DAY 2 Lecture: High-throughput
Tuesday

computing
DAY 3 Lecture: Introduction to programming. Lecture: Introduction to Fortran 2003. Lecture: Beginning MPI.
\ihieibye Fundamental data types including integers, Use of a compiler. Differences between Collective communications.
floating-point numbers, and characters/strings. compiled languages and interpreted
Pitfalls of working with floating-point numbers. languages. Data types and typing. Arrays
Type conversions. Input and output to the console. and array operations. Input and output.
Conditionals and looping. Conditionals and loops.

Lab: Programming simple expressions. Writing Lab: Repeat the Day 1/Week 1 exercises _I@b: Monte S
o . . - . . simulations.
correct conditional expressions. Programming loops with a compiler and different syntax.

(while, for, and repeat). Reading and writing data as arrays.
DAY4
Thursday

Lecture: Classes and object-oriented
programming. Constructors and methods.
Data hiding. Inheritance. Software design
principles. More advanced Unix.

Lab: Writing a bash script
to submit multiple jobs,
each rendering several
frames of a “movie,” to a
queuing system.

Lab: Writing a class containing
topographic data. Application of the class
to a 2D grid. Interaction of the class with
NumPy arrays and Matplotlib.

Lecture: Functions, variable scope. Modules and Lecture: Functions and subroutines. Lecture: More advance
namespaces. File input and output. Modules. Defined types. Procedure and ~ MPI. Point-to-point
operator overloading. Make and make communications.
files. Simple bash scripting.

Lab: Reading data into a program. Writing Lab: Writing simple functions and Lab: Solving Laplace’s
functions. Grouping functions into a module. subroutines. Designing a programmer equation

defined type within a module and

developing related procedures. Writing a

simple bash script to compile and run a

program.
Lecture: Lists and list operators. Tuples and Lecture: Inheritance and polymorphism. Lecture: OpenMP.
dictionaries. Introduction to NumPy. Arrays and Introduction to Co-Array Fortran.

array operators. Differences between arrays and Introduction to using a queuing system.

lists.

Lab: Working with NumPy arrays. Array operations Lab: Conversion of the defined type from Lab: Another way to solve
on data. Mathematical operations. Development of a the previous day into a class. Submitting Laplace’s equation.
short module to analyze climate data. jobs to a queue.

To learn more about the program, visit:

